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Abstract

Dimensional tolerances are a primary concern during manufacturing of solid oxide cells. Tolerances
make metallic interconnects sensitive to electrical contacting which highly influences the overall stack
performance. Therefore, the force applied to a solid oxide cell stack to establish electrical contact
is very crucial. Variability of the height dimension at interconnect contacts may cause non-uniform
force distribution and large plastic deformation on some contacts resulting in local damage. This
phenomenon may be studied using Finite Element Methods. However, due to geometrically complex
designs of interconnects, high-fidelity simulations on stack level resolving the interconnect geometry
explicitely are computationally very expensive and cannot be used to study the aforementioned chal-
lenges within appropriate time frames. To tackle this dimensional scale bridging problem, in this
work, concepts of computational homogenization techniques are investigated to make stack level sim-
ulations more efficient that allow for a detailed analysis of the stacking process. The focus of this work
is to create a Finite Element framework to understand the effects of heterogenous height tolerances
of contacts using the homogenization approach during mechanical pressing. This in turn gives an
understanding of its influence on electrical contacting and mechanical deformation of every contact
during a stacking process. On the stack level, an effective, anisotropic elastoplastic material model
for the interconnect is formulated adding novel features called offset strain and coating strain. The
former allows to precisely simulate dimensional tolerances at low computational cost and the latter
considers an additional deformation mechanism of a soft coating material in the interconnect. On the
individual contact level, high-fidelity simulations of the fully resolved interconnects are carried out
to determine their homogenized mechanical behavior. These insights are then used to calibrate the
effective macroscopic model which can be used to effectively optimize the stacking force distribution
for an optimal contacting configuration with minimum deformation of the interconnect contacts.
Keywords: Multiscaling of interconnects; Homogenization for solid oxide cell stack; stack contacting;
contact modelling
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1 Introduction

1.1 State of the art

There has been a lot of development in fuel and electrolysis cell technology over the past few decades. The
current challenge is to bring this technology to production by reducing costs without loss of efficiency and
reliability. Dimensional tolerances during production create variance in the cell performances in a stack
which could lead to critical problems during operation. For planar solid oxide cells (SOCs), the inter-
connect is very sensitive to dimensional tolerances. The functional role of the interconnect is to separate
the air and fuel compartments, and to form electrical contacts between layers. Dimensional tolerances
on an interconnect may affect fuel distribution creating hot spots and cause inefficient electrical contact
between layers. Tolerances on the interconnect contacts play a significant role in electrical conductivity.
Specifically, varying height tolerances at these contacts in the range of a few tens of microns may lead to
loss of performance. The Finite Element Method (FEM) is one approach to understand forces required
during stacking of fuel cells to establish optimal contacting of the interconnects. However, conventional
simulation methods fully resolving the interconnects in the entire assembly require large computation
times caused by the immense high mesh resolution of geometrically complex contacts and the large num-
ber of repeating units in a stack, see Wu et al. [1]. Among others, Navasa et al. [2] have recently studied
computational homogenization techniques exploiting the periodically repeating structure of the intercon-
nect design. This approach could be used to get a high order of accuracy in combination with practical
computation times for stack level simulations. As general structure for computational inelastic homoge-
nization, a conventional full mesh model referred to as the high-fidelity model is homogenized to obtain
stress-strain relations for several load cases. A simplified block model referred to as the effective model
can be fitted on to the homogenized responses for the corresponding load cases. The general idea is to
replace the geometric complexities which may require a high mesh resolution to an equivalent material
response with a coarser resolution, reducing the computation time by several orders of magnitude. For
this work, the directions in the plane of the interconnect is referred to as the in-plane direction and the
direction of stacking is referred to as the out-of-plane direction.

Several homogenization schemes have been developed over the past decades along with constitutive mod-
els for elastic-inelastic solids, e.g., Simo & Hughes [3] and Lemaitre & Chaboche [4]. So, it is worthwhile
to first identify the suitable effective model for the current application. Solid oxide cells need to be stacked
together and it is necessary to make sure that there is sufficient contact pressure and area between layers.
So, the stack may be subjected to large forces which may not be evenly distributed, onsetting plasticity in
certain areas. Therefore, an inelastic constitutive behavior is required for the effective model. Moreover,
it is observed that the in-plane stiffness is significantly greater than the out-of-plane stiffness for such
kind of structures, see Molla et al. [5] and Tsuda et al. [6]. This is because its corrugated shape, designed
to form channels for passage of air and fuel, collapse rather easily out-of-plane than deform in-plane.
Therefore, an anisotropic effective model has been suggested. In the above mentioned studies, the need
for compressible plasticity has been expressed while homogenizing similar structures. This means that,
the onset of plasticity should render a non-isochoric material response. This is because, the out-of-plane
deformation shows negligible in-plane distortion during the collapse of these channels. In summary, a
compressible anisotropic elastoplastic effective model would be ideal to model interconnect contacts.

In general, metal plasticity models are based on Von Mises theory combined with some hardening effects
which is associative in nature, meaning that, plastic deformation is driven purely by deviatoric stresses
and show an isochoric material response. However, in recent years, there have been non-associative mod-
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els used for geomaterials like soil and rocks which essentially show a non-isochoric behavior, e.g., Ulloa et
al. [7]. The key ingredients for any elastoplastic model are: a yield surface that bound the elastic domain
with a yield function and a set of evolution equations to update the internal variables called the flow rule.
For associative plasticity, the internal variables are updated keeping their rate of change normal to the
yield surface, i.e., normality is always implied by the flow rule. However, for non-associative plasticity,
normality is no longer implied and there is the need of a more generalized flow rule derived from a plas-
tic potential which may differ from the yield function. This could give non-associative models a purely
phenomenological perspective, where the second law of thermodynamics is not necessarily enforced and
a variational structure may not be formed. Therefore, for the current application, an associative model
is the better choice, however, a non-isochoric behavior needs to be maintained in the plastic domain.

One approach to model non-isochoric plasticity, while maintaining a variational structure was formulated
in the work of Deshpande & Fleck [8] when modelling the isotropic behavior of aluminum alloy foams.
This work uses a plastic Poission’s ratio while assuming an associated flow rule and introduces plastic
compressibility into the Von Mises framework of elastoplastic material models. This idea was then
extended for modelling compressive behavior of metallic sandwich core structures in the work of Xue &
Hutchinson [9] for the rate-independent anisotropy. In this work, the authors created a dependence of
the effective yield stress on hydrostatic stress components by altering Hill’s criteria and formulated an
algorithm for anisotropic elastoplasticity based on this modified Hill’s criteria. Later, Tsuda et al. [6]
formulated a rate-dependent steady state extension of the model by Xue & Hutchinson [9] to model the
homogenized elastic–viscoplastic behavior of plate-fin structures. The model proposed in this work uses
the framework of Tsuda et al. [6] and introduces new modelling equations which can be adapted for any
kind of elastoplastic model.

1.2 Contributions

Tsuda et al. [6], Navasa et al. [2] and Molla et al. [5] use computational homogenization methods to
obtain properties of a periodically repeating structure. The homogenized properties were set as a ref-
erence to fit an effective model which represented the high-fidelity model in all respect. For the case of
interconnect contacts, the variability in the height dimension in the out-of-plane direction was observed
to pose a significant issue for electrical contacting. In this work, the homogenized stress-strain responses
of interconnect contacts with two different height dimensions were first obtained. A material model is
developed for compressible anisotropic rate-dependent plasticity that represents these dimensional tol-
erances as a material response. This was done by introducing a novel idea of so-called offset-strain in
the principle direction of these height tolerances. Analoguously, this idea is further extended to model
the behavior of an interconnect which contains a porous coating layer. The effective properties of these
coated interconnects were highly nonlinear and otherwise difficult to model using conventional material
models.

In Section 2, a design to work with is first introduced and the basic concepts of periodic homogenization
are discussed. Then, the homogenized responses are obtained by loading a representative volume of the
interconnect in the principle directions. In Section 3, interconnect contacts with dimensional tolerances
are homogenized and the concepts of offset- and coating-strains are discussed. Besides the extended
kinematics, constitutive equations are then formulated in the framework of rate-dependent compressible
anisotropic elastoplasticity. Section 4 shows the validation of the constitutive model by testing it with
its corresponding high-fidelity simulations. Lastly, a layout which relates the output from the effective
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model to the contact pressure in a high figelity model is discussed and gives a direct theoretical relation
to the electrical contacting. Zhu & Ghezel-Ayagh [10] and Kennouche at al. [11] discuss the relation and
significance of contact pressure to the electrical performance and is not looked at in this work.

2 High-fidelity model of interconnect contact

2.1 Description of the model

The schematic representation of a planar SOC referring to a patent from Ceres Power Limited [12] is
shown in Figure 1. One repeat unit consists of an interconnect, metallic substrate and anode-electrolyte-
cathode layers. The holes on the metallic substrate allow the passage of fuel through the electrolyte and
the gaskets ensure no leakage of air into the fuel stream. The interconnect has an indented structure
which contacts the next layer allowing flow of electric current. Therefore, it is necessary to ensure an

Figure 1: Schematic of a standard repeating fuel cell unit and definition of the representative volume
element.

optimal contact pressure for high efficiency of electron flow. These contacts also create channels that
separate air and fuel, so it is necessary that the height of these contacts are evenly maintained to ensure
efficient air-fuel distribution in a cell. Because of its corrugated design, the interconnect is generally the
least stiff component during stack compression. Most other components are solid, flat and see no plastic
deformation. Therefore, the other components are represented as a rigid plate in this study as was done
in the work of Molla et al. [5]. The significance of electrical contacting lies in the active area of the
interconnect, therefore, for simplicity, only the active area is considered in this work. The dimensions of
an ideal interconnect contact is shown in Figure 1.1 Crofer 22 APU by VDM Metals is a commonly used
material for the metallic interconnect, see Molla et al. [5], Abdoli et al. [13] and Shen et al. [14]. The
elastic and plastic properties were taken from the material data sheet [15] and are summarized in Table 1.

1Geomerty and material data used in this work may be scaled/altered so that it is not specific to any manufacturer.
However, the effects seen in the curves correspond to reality.
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Table 1: Material data for metallic interconnect according to Abdoli et al. [13].

Young’s Modulus (MPa) Poisson’s ratio (-)
220000 0.3

Yield stress (MPa) Plastic strain (-)
250 0
277 0.002
365 0.01

The metallic interconnect is usually coated with a coating layer. After some indentation experiments,

Table 2: Pressure-closure relation for coating layer.

Pressure (MPa) Closure (mm)
0 0
0.2 5.00E-07
4.4 0.00014
5 0.00062

11.04 0.002225
16.8 0.00428
33.36 0.00794
128.91 0.01134
374.32 0.01458
795.066 0.0169
1419.986 0.01858
1913.878 0.0191
2878.67 0.02

the material data for the coating layer was evaluated. The pressure-closure data for the coating is shown
in Table 2 and is modelled with the gasket material model in ABAQUS. The thickness of the coating
was taken to be 0.02 mm. After a mesh convergence study, C3D8 elements were chosen for the metallic
interconnect. GK3D8N elements were chosen for the coating material because its exponential stiffness
could be closely depicted using gasket material properties. Finite element calculations were done using
the commercially available software package ABAQUS.

2.2 Computational homogenization

The interconnect geometry is a periodically repeating structure in the active area as described in Fig-
ure 1. The representative unit volume primarily comprised of one interconnect contact and its coating.
For homogenization in the out-of-plane loading direction, these components were sandwiched between
rigid plates, to enforce the assumption that other components showed no deformation as discussed in
Section 2.1. Discrete rigid elements are generally limited when setting kinematic equation constraints at
its nodes, therefore, this geometry was again sandwiched between non-rigid plates for a consistent set of
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periodic boundary conditions, see Figure 1. The non-rigid plates were only placed to link the corner, edge
and face nodes at the top and bottom faces and showed no contribution to the stress-strain response. For
in-plane loading, the plates were not included for the kinematic equation constraints. Periodic bound-
ary conditions were applied to the representative unit volume referring to the work of Li et al. [16] and
Li [17]. Based on their work, kinematic equation constraints were set up on edges, corners and faces of
the unit cell. These were linked to 6 reference nodes called key degrees of freedom12 in directions (xx,
yy, zz, xy, yz, xz). In this approach, nodal displacements at these key degrees of freedom are equal
to the homogenized strains in the corresponding direction. Concentrated forces at the key degrees of
freedom have dimensions equivalent to force times length. The homogenized stress is, therefore, equal to
the concentrated force at the key degrees of freedom divided by the volume of the unit cell and has been
proven in a rigorous derivation in [17]. This approach eliminates the need to calculate average stresses
and strains in a post-processing step, provided that, the kinematic equations are in the form stated in
Appendix A.

2.3 High-fidelity response

(a) In-plane normal load εxx = εyy (b) In-plane shear load εxy

(c) Out-of-plane shear load εxz = εyz (d) Out-of-plane normal load εzz

Figure 2: Von Mises stress distributions in the high fidelity interconnect model.

Due to in-plane symmetry of the geometry, the elastoplastic stress-strain responses were computed for
four loading cases only. The concentration of Von Mises stress on the cross section of the metallic
interconnect contact for these loading cases are shown in Figure 2. Figure 2(a) shows the case for

1Based on the coupling constraints in Appendix-A, the nodal displacement at the key degree of freedom in any direction
(dir) is ucd

dir = udir/ldir and is equivalent to the homogenized strain component in that direction.
2Similarly, the nodal force at the key degree of freedom in any direction (dir) is fcd

dir = fdir × ldir. Once divided by the
volume of the RVE, corresponds to the homogenized stress component in that direction.
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uniaxial normal loading in the in-plane direction (xx, yy). Similarly, Figure 2(d) shows the uniaxial
normal loading case in the out-of-plane direction (zz). Figure 2(b) and Figure 2(c) show shear loading
cases in the in-plane (xy) and out-of-plane (xz, yz) directions. The results and observations for all cases
are summarized in Figure 3. The stress-strain responses showed significant anisotropy between in-plane
and out-of-plane loading directions. Figure 3(a) shows that the yield stress in the out-of-plane direction
was about one order of magnitude lower than the in-plane direction. This means that the interconnect
contacts were significantly stiffer in-plane, however, there is no primary loading in this direction during
stacking. Another parameter is the volume dilation during uniaxial loading. This can be seen by plotting
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Figure 3: Results of computational homogenization

the driving strain with the other strain components in a uniaxial normal loading in Figure 3. Figure 3(b)
shows the corresponding strains εyy(εxx) and εzz(εxx) resulting from an in-plane normal loading strain
εxx and Figure 3(c) shows the corresponding in-plane strains εxx(εzz) and εyy(εzz) as a consequence of
an out-of-plane normal loading strain εzz. Figure 3(c) suggests that the interconnect contact collapses
without significant in-plane expansion indicating the need for an elastoplastic effective model of a non-
isochoric nature. As another observation, depicted in Figure 3(a), the normal out-of-plane loading εzz
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has an initial nonlinear stress response in the out-of-plane stress component σzz(εzz), which characterizes
the influence of the coating layer. This behavior is crucial because it is in the direction of primary loading
during the stacking process.

3 Effective model for interconnect

High fidelity simulations are computationally expensive due to the high mesh resolution required for the
corrugated interconnect design and the number of repeating units in an SOC stack. The computational
effencicy can be increased by replacing the high fidelity repeating geometry with one single brick element
of equivalent material behavior who’s volume is equal to that of the repeat unit. This reduces the number
of elements to one per interconnect contact and significantly reduces the simulation time by several orders
of magnitude. Such kind of a model reduction simplifies the problem by converting geometric complexities
into non-linear material responses which significantly reduces simulation time while maintaining necessary
accuracy.

3.1 Model requirements

The observations in Section 2.3 indicate that an anisotropic effective elastoplastic model is required that
considers i) volumetric compressibility, ii) the non-linear irreversible deformation of the soft coating layer
and iii) the variability in contact heights. Figure 4(a) and Figure 4(b) show contacts with a difference of 25

(a) Tall contact with coating. (b) Short contact with coating.
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Figure 4: Impact of height tolerances in interconnect contacts on the homogenized stress-strain response.

µm in their height dimensions and are loaded uniaxially in the out-of-plane direction. Keeping the effective
height of the RVE constant, i.e., the distance between top and bottom plates, the homogenized stresses
for the short contact σsczz and the tall contact σtczz are plotted in Figure 4(c). The shorter interconnect
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contact shows an offset of the stress-strain response on the strain axis and can be interpreted as a zone of
zero stiffness until it contacts the plate above. This offset is due to the missing 25 µm height dimension
in Figure 4(b). This means that the geometric tolerances at individual contacts in the high-fidelity model
can be represented in the form of a material response in the effective model. This is done by introducing
a parameter called offset-strain which is the strain corresponding to the difference between the height
dimension of the representative unit cell and of the measured interconnect contact.

3.2 Basic kinematics and state variables

In a small strain setting the total strain ε is additively decomposed into

ε = εe + εof + εco + εvp (3.1)

in terms of the stress producing elastic strain εe, the offset strain εof , the coating strain εco and the
viscoplastic strain εvp. Here, the offset strains consider geometric tolerances discussed in Section 3.1 and
the coating strain models a non-linear initial transition of the porous coating layer in Section 2.3.

3.3 Elastic response

The specific free energy for anisotropic elasticity is assumed to depend on the stress producing strain

ψ(εe) =
1

2
εe : CCC : εe (3.2)

based on the elasticity tensor which has minor and major symmetries Cijkl = Cklij = Cjikl = Cijlk.
Exploitation of the dissipation inequality D = σ : ε̇− ψ̇ ≥ 0 motivates the stress definition

σ =
∂ψ

∂εe
= CCC : εe (3.3)

and the reduced form of the dissipation inequality

D = σ : ε̇of + σ : ε̇co + σ : ε̇vp ≥ 0 (3.4)

that must be fulfilled for all deformation states. For subsequent analysis, we restrict ourselves to or-
thotropic elasticity, which takes the following form in Voigt notation

CCC =



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


. (3.5)

3.4 Evolution of offset and coating strain

For the offset strain, representing the tolerances in the height dimension, we assume

εof = εofNof with Nof = ez ⊗ ez (3.6)

where ez represents a unit normal basis vector in the out-of-plane direction, i.e., the direction of tolerances.
The amount of compressive offset strain follows by

εof =

{
ε̃of (ε, εco, εvp) for ε̃of (ε, εco, εvp) ≤ εoftol,
εoftol otherwise.

(3.7)
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where the parameter εoftol < 0 takes into account the geometric tolerances in the interconnect contact
heights. The offset function considers inelastic deformations in the soft coating layer and visco-plastic
deformations in the metal interconnect that may have occured in the loading history

ε̃of (ε, εco, εvp) = (ε− εco − εvp) : Nof (3.8)

Besides the offset strain correction, a coating strain is introduced that mimics the influence of a soft
porous coating material. Analogous to equation (3.6) we assume

εco = εcoN co with N co = ez ⊗ ez (3.9)

where ez represents a unit normal basis vector in the out-of-plane direction (or direction of tolerance).
The amount of compressive coating strain is governed by

εco = min
τ∈[0,t]

ε̃coτ (3.10)

and can be regarded as a minimum equivalent strain measure obtained in a typical, possibly non-
monotonic loading process. For the equivalent strain measure for the soft coating material we assume

ε̃co(ε) = −a
(

1− exp
[
b (ε : N co − εoftol)

])
(3.11)

in terms of the material constants a and b.

3.5 Viscoplastic response

The evolution of the viscoplastic strain is assumed to have the following form

ε̇vp = ε̇vpNvp with Nvp = MMM : σ. (3.12)

Here, the direction of anisotropic viscoplastic flow is governed by the Hill-type fourth order tensorMMM with
the major and minor symmetries Mijkl = Mklij = Mjikl = Mijlk. Accoring to Xue & Hutchinson [9], a
dependence of the effective stress on the hydrostatic stress components is considered by a Hill-type tensor
which, in Voigt notation, takes the form

MMM =



α12 + α13 + α11 −α12 −α13 0 0 0

−α12 α23 + α12 + α22 −α23 0 0 0

−α13 −α23 α13 + α23 + α33 0 0 0

0 0 0 6α44 0 0

0 0 0 0 6α55 0

0 0 0 0 0 6α66


. (3.13)

The amount of viscoplastic flow is governed by

ε̇vp =
Ė0

σ0

(‖σ‖M
σ0

)n−1
with ‖σ‖M =

√
1

2
σ : MMM : σ (3.14)

in terms of the material parameters Ė0, σ0 and n. Incompressible isotropic plastic flow is recovered for
MMM = PPP with the fourth order deviatoric projection tensor PPP = III − 1

31 ⊗ 1 and the fourth order identity
tensor Iijkl = 1

2 (δikδjl + δjkδil).
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3.6 Effective model behavior

In this Section, the mechanical behavior of the effective model is discussed for several loading cases. To
this end, a block geometry with dimensions identical to the high-fidelity RVE-model, i.e., 1.272 mm x
1.272 mm x 0.27 mm, is investigated using nominal material parameters. A compressive strain rate of
0.3s−1 was applied in the out-of-plane direction and a tensile strain rate of 0.008s−1 was applied in the in-
plane direction. The geometry was discretized using one C3D8 element and uniaxial and biaxial loading
states are applied to explain the main model characteristics. The material model was first tested for the
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Figure 5: Characteristics of effective model: Offset and coating formulation under several loading cases.

offset formulation, with and without coating behavior, under uniaxial compression in the out-of-plane
direction. The stress-strain response for this test is plotted in Figure 5(a). For the pure offset formulation,
it is seen that, despite there being some strain in the element, the stress response (σw/o cozz ) is zero until
a limiting strain threshold of about εzz = 0.12. When the strain in the element exceeds this threshold
value, the material shows a typical elastoplastic response. For the offset and coating formulation, the
stress response (σw/ cozz ) can be characterized with a smooth exponential transition into the elastic domain
and is also plotted in Figure 5(a). The effect of the offset and coating formulation for a uniaxial loading
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in the in-plane direction is seen in Figure 5(b). The offset or coating parameters do not influence the
in-plane behavior for a uniaxial loading case suggesting that the formulation developed in Section 3.4 does
not cause any unforeseen effects in other directions for the uniaxial loading case. The offset and coating
formulation was then tested using the same geometry under a normal loading in-plane and out-of-plane
simultaneously with the mentioned strain rates. Figure 5(c) shows the stress-strain response over time for
the in-plane and out-of-plane directions. In the offset domain, stress response in the in-plane direction is
same as the uniaxial case in Figure 5(b). However, at the end of the offset domain, there is a decrease in
the yield stress which depict a typical biaxial loading behavior. This infers that the loading in the offset
domain gives a stress response equivalent to the uniaxial loading case in the in-plane direction. But when
the strains exceed the offset threshold, the model shows a typical biaxial loading stress response. The
loading-unloading behavior was plotted in Figure 5(d) for a uniaxial loading in the out-of-plane direction
for three consecutive cycles. It was observed that there was a recovery of the elastic strain after each
cycle, however, the offset-strain, coating-strain and plastic-strain was non-recoverable at zero stresses. It
may also be noted that this formulation permits only compressive loading in the out-of-plane direction.

4 Computational investigations and validation

4.1 Parameter identification for effective model

The effective model was calibrated to the homogenized responses obtained in Section 2.3 for a steady
state strain rate of 0.25 s−1 out-of-plane and 0.03 s−1 in-plane. Figure 6(d) shows the effective stress-
strain response of uniaxial normal loading for a tall and short contact in the out-of-plane direction fitted
on to its homogenized response. Figures 6(a), 6(b) and 6(c) show the fitting of the effective model for
remaining normal and shear cases in-plane and out-of-plane. Similarly, the volume dilation for uniaxial
normal loading cases in-plane and out-of-plane are also seen in Figure 6. Figure 6(e) shows the effective
strain components εyy(εxx) and εzz(εxx) fitted onto the high fidelity homogenized model for a normal
in-plane loading εxx. Figure 6(f) shows the effective strain components εxx(εzz) and εyy(εzz) fitted onto
the high fidelity homogenized model for a normal out-of-plane loading εzz. The input properties for the
effective model consists of an elasticity tensor C, a plasticity tensor M and the viscoplastic coefficients
ε̇0, σ0 and n, the limiting offset strain εoftol and the coefficients for the coating strain a and b. Table 3

Table 3: Anisotropic input parameters for the effective model obtained from fit to homogenized response.

(a) Elasticity.

Elastic coefficients (MPa)
C11 52000

C12 0

C13 0

C22 52000

C23 0

C33 650

C44 10000

C55 750

C66 750

(b) Viscoplasticity.

Hill-type coefficients (-)
α11 48.5

α12 −19.5

α13 0

α22 200

α23 0

α33 3475

α44 33.33

α55 408.33(tc), 466.667(sc)

α66 408.33(tc), 466.667(sc)

summarizes the identified anisotropic elastic and viscoplastic coefficients. Parameters for the viscoplastic
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Figure 6: Parameter identification based on four basic deformation modes and volume dilation.
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Table 4: Input parameters for the effective model obtained from fit to homogenized response.

(a) Viscoplasticity.

Initial strain rate (-)
ε̇0 0.00253602

Initial stress (MPa)
σ0 244.81

Exponent (-)
n 1.55

(b) Tall contact.

Offset strain (-)
εof,tctol 0.02

Coating thickness (mm)
atc 0.04

Coating stiffness (MPa)
btc 26.0

(c) Short contact.

Offset strain (-)
εof,sctol 0.11

Coating thickness (mm)
asc 0.04

Coating stiffness (MPa)
bsc 26.0

response and parameters for the offset and coating strain parameters for the tall and short contact are
summarized in Table 4.

4.2 1-Layer: 16 Contacts

In order to validate the material model in Section 3, the effective model was compared to a high-fidelity
simulation. The two coated contacts introduced and homogenized in Section 3.1 were used to create a grid
of 16 contacts of 2 different height dimensions. Their heights were 25 µm apart and were positioned at
random locations in the grid. An effective model was constructed replacing the contacts by brick elements
as discussed in Section 3.6 with same positions of tall and short contacts. The material properties for the
effective model was taken from Section 4.1. Both models were compressed between rigid plates with the
strain rates given in Section 4.1 and were constrained in-plane at their edges. Figure 7(a) and Figure 7(b)
show the stress concentration in the high-fidelity model and effective model in the zz − direction. The
contacts with larger height dimension exhibited larger stress concentrations in the zz − direction and
upon undergoing deformation of about 25 µm, the shorter contacts began to deform. Figure 7(c) shows
the force-displacement curves from the compression simulations and the curve fit closely. The effective
model had a significantly reduced simulation time which was compared with the high-fidelity case. The
high-fidelity model required 48 parallel CPUs on the high performance cluster and took about 28 hours
whereas the effective model took about 30 seconds on a standard workstation desktop. This shows that
the effective model is capable of successfully simulating variability in the height dimension of contacts on
an SOC interconnect as well as non-linear coating behavior.

4.3 2-Layer: 16 Contacts

In the previous section, the effective model was validated for the compression of a single interconnect layer.
In this section, the repeatibility of results for a multilayered stack was tested. The coated interconnect
contacts of two height dimensions were used to create interconnects with a variability in its contact
heights as discussed in Section 4.2. The height dimensions between the two contacts were 25 µm apart
and were positioned at random locations. Two such interconnects were stacked together separating each
other with rigid plates. The effective model was constructed in a similar way as discussed in Section 4.2.
The material proprties for tall and short contacts and the loading condtions were taken from Section 4.2.
Figure 7(d) and Figure 7(e) show the stress concentration in the high-fidelity model and effective model.
Figure 7(f) shows the force-displacement curves from the compression simulations. It may be noted that
on increasing the number of layers, the effective model consistently represents the high fidelity model.
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Figure 7: Numerical Validation for 1-Layer and 2-Layers of interconnects
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(a) Contact pressure phf in high fidelity simulation for
one contact

0 5 · 10−2 0.1 0.15 0.2 0.25
0

20

40

60

80

100

Strain εefzz (-)

A
ve
ra
g
e
co
n
ta
ct

p
re
ss
u
re
p
a
v
g
(M

P
a)

phfavg
pef

(b) Fitting of contact pressure pef for effective model

(c) Contact pressure phf in high fidelity simulation of
16 contacts

(d) Contact pressure pef in effective model of 16 con-
tacts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

120

Contact number

C
on

ta
ct

p
re
ss
su
re

(M
P
a)

phfavg

pef

(e) Comparison of contact pressures in high fidelity phf and effective model pef at 218N

Figure 8: Evaluation and validation of contact pressures at individual contacts in the high fidelity phf

and effective model pef .
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4.4 Evaluation of interconnect contact situation

In this section, a layout is described which uses this model in a setting specific to evaluation of contact
pressure for SOC contacts, where the displacement, or the force, used to compress a stack is input to the
effective model. At the end of a stack compression simulation, the contact situation of the interconnects
is computed in a post-processing step. In the effective model, the effective strains εef = ε− εof describe
the effective compression of individual contacts. This strain is proportional to the contact pressure based
on a relation which may be derived from previously executed high-fidelity FEM compression simulation.
The resulting average contact pressure versus effective strain relation is obtained from a high-fidelity
FEM compression simulation for one contat which expresses the average contact pressure as a function
of effective strain εef and can predict the average contact pressure directly from the effective model. In
this layout, the average contact pressure for the compression of a single contact is evaluated from the
simulation depicted in Figure 8(a). The average contact pressure is plotted versus the strain in the RVE.
This relation is shown in Figure 8(b). Aiming at an efficient estimation of the contact pressure based on
simulations with the effective model, the following relation is assumed in Equation 4.1.

pef = k1 exp

[
−
(
εefzz − k2
k3

)2
]

+ k4 exp

[
−
(
εefzz − k5
k6

)2
]

+ k7 exp

[
−
(
εefzz − k8
k9

)2
]

(4.1)

The coefficients for Equation 4.1 obtained from a curve fitting routine are summarized in Table 5. Using
these parameters, the fitted function in Equation 4.1 is plotted in Figure 8(b). This relation represents

Table 5: Input parameters for estimation of contact pressure from effective model response.

Contact pressure coefficients (-)
k1 46.83

k2 0.06711

k3 0.02851

k4 63.51

k5 0.1118

k6 0.05506

k7 67.28

k8 0.2106

k9 0.1014

the average contact pressure as a function of the effective strain εef of each contact, obtained from the
effective model. The average contact pressure at each contact can be evaluated in the high fidelity model
in Figure 8(c) and compared with the contact pressures evaluated from effective strains εef in the effective
model in Figure 8(d). At a nominal stacking force of about 218N , the distribution of contact pressures
at each contact is compared for the high fidelity model and the effective model in Figure 8(e).

5 Conclusion

Dimensional tolerances at interconnect contacts cause inefficient contacting and affect SOC stack perfor-
mance. The work prewented here primarily focuses on creating the necessary tools in the finite element
framework to understand the influence of these tolerances (particularly height tolerance) during stack
pressing. Due to large computation time of high-fidelity models, the homogenization approach was used
to simulate interconnect contacts with different height dimensions for their stress-strain responses. A
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rate-dependent compressible anisotropic elastoplastic effective model was developed and fit to the ho-
mogenized stress-strain responses for contacts of two different dimensions. This work introduced the
concept of offset strain in an anisotropic framework to model dimensional tolerances. Subsequently, this
concept was extended to model non-linear behaviors, such as coatings on metallic interconnects. The
necessary mathematical framework was formulated, coded using Intel FORTRAN and implemented in
ABAQUS through user material subroutine (UMAT). Finally, the effective model was validated using a
benchmark, high-fidelity simulation. The model used for this study had a specific interconnect design,
however, this approach may be generalized for any design (for example, a channel type sinusoidal inter-
connect design). The idea of offset-strains can be used for other elastoplastic models and the exponential
coating behavior may also be replaced with a different function for materials with a peculiar behavior in
any specific direction. However, it should be noted that these equations may not work well for isotropic
models without introducing a certain level of anisotropy. An isotropic update of offset-strains would
introduce in-plane instability because of the in-plane offset formulation. With a general anisotropic
elastoplastic model (with plastic incompressibility), the offset strains show a good convergence at low
variability in height dimensions. However, for larger variability, elements with different offset-strains see
plasticity at different instances. This introduces plastic incompressibility in-plane at different rates which
may cause element distortion. One could set the elastic Poisson’s ratio to get isochoric behavior in the
elastic domain, so with the onset of plasticity, the in-plane expansion for all elements are at the same
rate, avoiding distortion. This was tested by adapting the formulation to different anisotropic plasticity
algorithms like Miehe et al. [18, 19] to check its applicability for further use. Contact pressure is a very
important parameter while studying performance of fuel cells. Therefore, in the last part of this paper, a
layout is provided to convert the parameters obtained from the effective model in terms of contact pres-
sure. To use this model in practice, the height tolerance data on several interconnects may be measured
using some kind of measurment setup. An effective stack model uses this data along with the stack press-
ing force (or displacement) as input and calculates effective strains at individual contacts. The contact
pressure can be expressed as a function of these strains as described in Section 4.4 and a quantitative
estimation of the distribution of contact pressure can be obtained. Finally, the stacking forces may be
optimized for suitable contacting conditions while minimizing large plastic deformation.

Appendix A. Periodic boundary conditions for high-fidelity model

In this Section, the equation constraints for periodic boundary conditions are described for faces, edges
and corners. ucd is the key degree of freedom for the given direction. The two faces to be constrained
are ’A’ and ’B’ used as superscripts. The principle normal and shear directions are xx, yy, zz, xy, xz,
yz. ux, uy and uz are the displacement components in all directions. ∆l is the distance between the two
faces. The constraint equation for the two faces take the form

uAx − uBx − ucdxx∆l = 0

uAy − uBy − ucdxy 1
2∆l = 0

uAz − uBz − ucdxz 1
2∆l = 0

(5.1)

The equations for the other six faces can be written following a similar pattern and is not mentioned
here. The edges parallel to the z-axis are labelled as I, II, III and IV . Edge I is taken as the reference
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edge and edge II is adjacent to it on the x-axis, so the equations for these edges take the form

uIIx − uIx − ucdxx∆l = 0

uIIy − uIy − ucdxy 1
2∆l = 0

uIIz − uIz − ucdxz 1
2∆l = 0

(5.2)

Edge IV is adjacent to edge I on the y-axis (2-direction) and the equations take the form

uIVx − uIx − ucdxy 1
2∆l = 0

uIVy − uIy − ucdyy∆l = 0

uIVz − uIz − ucdyz 1
2∆l = 0

(5.3)

The equations for edge III diagonally opposite to edge I can be written as a combination of edges II
and IV in the form

uIVx − uIx − ucdxx∆l − ucdxy 1
2∆l = 0

uIVy − uIy − ucdxy 1
2∆l − ucdyy∆l = 0

uIVz − uIz − ucdxz 1
2∆l − ucdyz 1

2∆l = 0

(5.4)

The equations for other edges parallel to the x-axis and y-axis can be written using the same pattern.
For corners, one reference corner is identified and the equations for all other corners are formulated with
reference to the position of this corner. The reference corner is labeled with superscript ’ref’ and the
adjacent corner with superscript ’adj’. For this case, the corner is adjacent in the x-direction

urefx − uadjx − ucdxx∆l = 0

urefy − uadjy − ucdxy 1
2∆l = 0

urefz − uadjz − ucdxz 1
2∆l = 0

(5.5)

The diagonal corners are expressed as a combination of multiple adjacent corners as done for the edges.
Using this pattern, the equations for all other corners can be written. For a more detailed understanding,
the reader could refer to a thesis by Praud [20].

Appendix B. Algorithmic treatment of model equations

The constitutive equations for the effective model, see Section 3, are implemented into the commercial
finite element package ABAQUS [21] using the user material model interface UMAT. In a typical time-
stepping procedure we consider the process interval [0, T ]. In this interval we are seeking the solutions at
the discete times 0, t1, t2, . . . , tn, tn+1, . . . , T where all field variables at time tn are assumed to be known.
Aiming at a compact notation, we drop in what follows the subscript tn+1 and consider all variables
without subscript to be evaluated at time tn+1. In a time discrete setting, the stresses are computed via

σ = CCC : εe = CCC : [ε− εof (ε, εcon , ε
vp
n )− εco(ε)− εvp(σ(ε))] (5.6)

In a time discrete setting, the algorithmic counterpart of the offset strain formulation (3.8) reads

εof =

{
ε̃of (ε, εcon , ε

vp
n ) for ε̃of (ε, εcon , ε

vp
n ) ≤ εoftol,

εoftol otherwise.
(5.7)

in terms of the time-discrete equivalent offset strain function

ε̃of (ε, εcon , ε
vp
n ) = (ε− εcon − εvpn ) : Nof (5.8)
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in which a semi-implicit approach was chosen for the dependencies on the coating and viscoplastic strains.
Similarly, the update of the amount of coating strain (3.10) follows by

εco =

{
ε̃co(ε) for ε̃co(ε) ≤ εcon ,
εcon otherwise.

(5.9)

where the irreversibility constraint for the coating strain is considered explicitely. The equivalent strain
measure for the soft coating material reads

ε̃co(ε) = −a
(

1− exp
[
b (ε : N co − εoftol)

])
. (5.10)

The time-discrete counterpart of the evolution equation for the viscoplastic strain update (3.12) reads

∆εvp = ∆tλ(σ)MMM : σ with λ(σ) =
Ė0

σ0

(
σeq

σ0

)n−1
and σeq =

√
1

2
σ : MMM : σ. (5.11)

Reformulation of the stress update in equation (5.6) gives

σ = σtr −CCC : ∆εvp(σ) with σtr = CCC : [ε− εof (ε, εcon , ε
vp
n )− εco(ε)− εvpn ]. (5.12)

where we introduced the trial stresses as a function of the total current strain and the coating and offset
strains evaluated at In a residual format we obtain the nonlinear equation for the stresses

r(σ) := σ − σtr + ∆t λ(σ)CCC : MMM : σ. (5.13)

This equation is solved using Newtons method with the following stress update

σ ⇐ σ + ∆σ with ∆σ = −r(σ) :

[
∂r

∂σ

]−1
(5.14)

until convergence is obtained in the sense of ‖r(σ)‖ ≤ tol. The required tangent reads

∂r

∂σ
= IIIs + ∆t

[
∂λ

∂σeq
MMM : σ ⊗CCC : MMM : σ + λCCC : MMM

]
with

∂λ

∂σeq
=

(n− 1)Ė0

σ2
0

(
σeq

σ0

)n−2
. (5.15)

If convergence of the local Newton iteration has been achieved, the viscoplastic strain can be updated

εvp = εvpn + ∆t λ(σ)MMM : σ (5.16)

and the material tangent, required in a finite element context, can be calculated

∂σ

∂ε
= CCC :

[
IIIs − ∂εof

∂ε
− ∂εco

∂ε

]
:

[
∂r

∂σ

]−1
(5.17)

containing the derivatives related to the offset and coating strains

∂εof

∂ε
=

{
Nof⊗Nof for ε̃of (ε, εcon , ε

vp
n ) ≤ εoftol,

0 otherwise.
(5.18)

and
∂εco

∂ε
=

{
a b exp

[
b (ε : N co − εoftol)

]
N co⊗N co for ε̃co(ε) ≤ εcon ,

0 otherwise.
(5.19)
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